Electromagnetic compatibility (EMC) –
Part 4-23: Testing and measurement techniques – Test methods for protective
devices for HEMP and other radiated disturbances
CONTENTS

FOREWORD .. 6
INTRODUCTION .. 8

1 Scope .. 9
2 Normative references ... 9
3 Terms and definitions ... 10
4 HEMP test concepts ... 15
 4.1 General .. 15
 4.2 Testing of shielding enclosures .. 16
 4.2.1 General .. 16
 4.2.2 Buildings .. 19
 4.2.3 Shelters and shielded rooms .. 20
 4.2.4 Cabinets, racks and boxes ... 21
 4.3 Testing of shielded cables and connectors .. 23
 4.3.1 General .. 23
 4.3.2 Testing of cable shields .. 23
 4.3.3 Testing of cable connectors ... 26
 4.4 Testing of shielding materials ... 27
 4.4.1 General .. 27
 4.4.2 Conducting gaskets ... 27
 4.4.3 Conducting sheets and screens .. 29
 4.4.4 Cut-off waveguides and honeycombs .. 32
 4.5 Summary of test concepts .. 33

5 Test methods for measuring the shielding effectiveness of HEMP protection facilities 34
 5.1 General .. 34
 5.2 Electromagnetic field testing ... 34
 5.2.1 General .. 34
 5.2.2 Pulse field testing ... 34
 5.2.3 CW field testing ... 40
 5.3 Current injection test procedures ... 55
 5.3.1 General .. 55
 5.3.2 Injection testing of enclosures .. 55
 5.3.3 Transfer impedance and admittance of cable shields and connectors 57
 5.3.4 Testing of gasket material .. 57

Annex A (informative) HEMP test concepts for electrical systems 60
 A.1 Overview .. 60
 A.2 Types of HEMP tests ... 60
 A.2.1 General .. 60
 A.2.2 System-level transient tests .. 60
 A.2.3 CW field illumination tests .. 61
 A.2.4 Current injection testing ... 61
 A.2.5 Partial illumination testing .. 62
 A.2.6 Subsystem and component testing .. 62
 A.3 Definition of the testing interface ... 63
 A.4 Use of test data ... 65
 A.4.1 General .. 65
Figure C.1 – Magnetic field sensors [23] ... 73
Figure C.2 – Single-slot, cylindrical coil sensor [23] ... 73
Figure C.3 – Two- and four-slot cylindrical coil sensors [23] .. 74
Figure C.4 – Electrical configuration of an E-field sensor [23] ... 74
Figure C.5 – Biconical E-field sensor .. 75
Figure C.6 – E-field sensor mounted on a conducting ground plane [23] 75
Figure C.7 – Equipotential shapes for an optimally designed E-field sensor [23] 75
Figure C.8 – Rogowski coil used for current measurements [23] ... 76
Figure C.9 – Toroidal current sensor made of magnetic material [23] 76
Figure C.10 – Voltage pick-up points on the edges of the toroidal sensor [23] 76
Figure C.11 – Example of a single-channel fibre optic transmission system [23] 77
Figure C.12 – Attenuation of coaxial lines and fibre optic cables as a function of frequency .. 78
Figure D.1 – Various antennas for CW testing ... 81
Figure D.2 – Relationship between the CW antenna and the incident HEMP field 82
Figure D.3 – Incident and ground-reflected field contributions to the reference sensor excitations .. 84
Figure D.4 – Measured reference H-field spectrum and its inverse Fourier transform 85
Figure D.5 – Measured sensor responses and calibration function ... 87
Figure D.6 – Measured transfer function, corrected by calibration file 87
Figure E.1 – Example of a general shielding problem ... 89
Figure E.2 – Behaviour of the impedance ratio EH as a function of distance from a source [29] .. 90
Figure E.3 – Conducting slab of thickness, d, and infinite extent serving as an electromagnetic barrier .. 91
Figure E.4 – Equivalent circuit representation of the shielding problem 92
Figure E.5 – Two-port representation of a circuit ... 93
Figure F.1 – Test set-up for the outside-to-in and inside-to-out SE measurement 100

Table 1 – Recommended test procedure for different test objects .. 34
Table 2 – Dimensions and composition of distances d_1 to d_3, with reference to Figure 30 50
Table 3 – Dimensions and composition of distances d_1 to d_3, with reference to Figure 31 51
Table 4 – Measurement frequencies and antennas in plane-wave .. 52
Table 5 – Measurement frequencies and antennas in magnetic field 54
Table E.1 – Surface resistance and electrical parameters for selected materials 95
Table F.1 – Comparison with other standards .. 98
Table F.2 – Test shielded rooms .. 99
Table F.3 – Comparison of the SE measurement results .. 101
INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTROMAGNETIC COMPATIBILITY (EMC) –

Part 4-23: Testing and measurement techniques –
Test methods for protective devices for HEMP
and other radiated disturbances

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61000-4-23 has been prepared by subcommittee 77C: High power transient phenomena, of IEC technical committee 77: Electromagnetic compatibility.

It forms Part 4-23 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107.

This second edition cancels and replaces the first edition published in 2000. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) updates to the shielding effectiveness (SE) test method in Clause 5;

b) a new Annex F describing methods for testing ‘inside-to-out’ has been added.
The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>77C/253/CDV</td>
<td>77C/257/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61000 series, published under the general title *Electromagnetic compatibility (EMC)*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

IEC 61000 is published in separate parts, according to the following structure:

Part 1: General
 General considerations (introduction, fundamental principles)
 Definitions, terminology

Part 2: Environment
 Description of the environment
 Classification of the environment
 Compatibility levels

Part 3: Limits
 Emission limits
 Immunity limits (in so far as they do not fall under the responsibility of the product committees)

Part 4: Testing and measurement techniques
 Measurement techniques
 Testing techniques

Part 5: Installation and mitigation guidelines
 Installation guidelines
 Mitigation methods and devices

Part 6: Generic Standards

Part 9: Miscellaneous

Each part is further subdivided into several parts, published either as international standards, as technical specifications or technical reports, some of which have already been published as sections. Others will be published with the part number followed by a dash and a second number identifying the subdivision (example: IEC 61000-6-1).

The IEC has initiated the preparation of standardized methods to protect civilian society from the effects of high power electromagnetic (HPEM) environments. Such effects could disrupt systems for communications, electric power, information technology, etc.

This part of IEC 61000 is an international standard that establishes the test concepts, set-ups, required equipment, and test procedures for protective devices against HEMP radiated disturbances.

Annex F provides examples of the SE test method placing the TX antenna inside the barrier.
1 Scope

This part of IEC 61000 provides a protective devices test method for HEMP and other radiated disturbances. It is primarily intended for HEMP testing but can be applied to other externally generated radiated disturbances where appropriate. It provides a brief description of the most important concepts for testing of shielding elements. For each test, the following basic information is provided:

- theoretical foundation of the test (the test concepts);
- test set-up including outside-to-in and inside-to-out measurements;
- required equipment;
- test procedures;
- data processing.

This international standard does not provide information on requirements for specific levels for testing.

This part of IEC 61000 has been updated to include a new test method.

Due to the available space, a transmitting antenna position outside the barrier has mainly been suggested. However, nowadays, many EMP protection facilities in practical use do not actually have enough space available outside the electromagnetic barrier due to physical constraints such as concrete walls or soil to allow the method described in IEC 61000-4-23:2000 (edition 1) to be applied correctly. From experience many facilities have available space for a 1 m separation or less only.

Therefore, in many practical cases it is not possible to measure shielding effectiveness according to the test method of previous documents. The constructors for EMP protection facilities are also unwilling to build facilities with extra space for measurements with the transmitting antenna outside the barrier due to the great expense and inefficiency of the operational working area for new or existing buildings.

This document provides additionally a method that allows the transmitting antenna to be placed inside the enclosure and the receiving antenna outside the barrier (‘inside-to-out’ method). Annex F includes test set-up and procedure examples.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-161, as well as the following apply.

3.1 aperture
opening in an electromagnetic barrier (shield) through which EM fields may penetrate

3.2 aperture point-of-entry
intentional or inadvertent holes, cracks, openings or other discontinuities in a shield surface

Note 1 to entry: Intentional aperture points-of-entry are provided for personnel and/or equipment entry and egress and for ventilation through an electromagnetic barrier.

3.3 attenuation
reduction in magnitude (as a result of absorption and scattering) of an electric or magnetic field, a current or a voltage, usually expressed in decibels

3.4 bandwidth (of a device)
width of a frequency band over which a given characteristic of an equipment or transmission channel does not differ from its reference value by more than a specified amount or ratio

[SOURCE: IEC 60050-161:1990, 161-06-09, modified – the note has been deleted.]

3.5 bandwidth (of an emission or signal)
width of the frequency band outside which the level of any spectral component does not exceed a specified percentage of a reference level

3.6 bounded wave simulator

type of simulator for producing electromagnetic fields in a localized region of space referred to as a “test volume”

3.7 box

enclosure that contains electrical equipment

Note 1 to entry: Such boxes usually contain modules of subsystems.

3.8 broadband

3.8.1 broadband

emission which has a bandwidth greater than that of a particular measuring apparatus or receiver