Electromagnetic compatibility (EMC) – Part 4-3: Testing and measurement techniques – Radiated, radio-frequency electromagnetic field immunity test
K.2 Probe calibration requirements ... 65
 K.2.1 General ... 65
 K.2.2 Calibration frequency range ... 65
 K.2.3 Frequency steps .. 65
 K.2.4 Field strength .. 66
K.3 Requirements for calibration instrumentation .. 66
 K.3.1 General ... 66
 K.3.2 Harmonics and spurious signals .. 66
 K.3.3 Linearity check for probe ... 67
 K.3.4 Determination of the gain of the standard horn antennas 68
K.4 Field probe calibration in anechoic chambers .. 69
 K.4.1 Calibration environments ... 69
 K.4.2 Validation of anechoic chambers for field probe calibration 69
 K.4.3 Probe calibration procedure ... 75
K.5 Other probe calibration environments and methods .. 77
 K.5.1 General ... 77
 K.5.2 Field probe calibration using TEM cells .. 77
 K.5.3 Field probe calibration using waveguide chambers ... 78
 K.5.4 Field probe calibration using open-ended waveguides 79
 K.5.5 Calibration of field probes by gain transfer method .. 79
K.6 Reference documents .. 79

Bibliography ... 81

Figure 1 – Definition of the 80 % amplitude modulated (AM) test signal and the waveshapes occurring .. 16
Figure 2 – Example of suitable test facility .. 18
Figure 3 – Level setting setup ... 19
Figure 4 – Dimensions of sixteen-point uniform field area ... 20
Figure 5 – Minimum UFA size having a fifth grid point in the centre 21
Figure 6 – Measuring setup ... 23
Figure 7 – Example of EUT setup and cable layout for table top EUT having a cable that leaves the test setup ... 26
Figure 8 – Example of EUT setup (top view) ... 28
Figure C.1 – Multiple reflections in an existing small anechoic chamber 41
Figure C.2 – Most of the reflected waves are eliminated (applies for top and side view) 41
Figure D.1 – Amplifier linearity measurement setup .. 44
Figure D.2 – Example of linearity curve .. 45
Figure D.3 – Example of gain deviation ... 45
Figure H.1 – Example of a test setup for EUT with bottom fed underground cables (CMADs not shown) .. 54
Figure H.2 – Example of a test setup for EUTs with overhead cables 55
Figure H.3 – Example of a setup of EUTs with multiple cables and AEs 56
Figure H.4 – Large EUTs with side fed cables and multiple UFAs 57
Figure I.1 – Test frequencies f_1 and f_2 and intermodulation frequencies of the second and third order .. 58
Figure J.1 – Example of influences upon level setting .. 62
Figure K.1 – Example of linearity for probe .. 68
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61000-4-3 has been prepared by subcommittee 77B: High frequency phenomena, of IEC technical committee 77: Electromagnetic compatibility.

It forms part 4-3 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107.

This edition includes the following significant technical changes with respect to the previous edition:

a) testing using multiple test signals has been described;

b) additional information on EUT and cable layout has been added;

c) the upper frequency limitation has been removed to take account of new services;

d) the characterization of the field as well as the checking of power amplifier linearity of the immunity chain are specified.
The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>77B/830/FDIS</td>
<td>77B/825/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61000 series, published under the general title Electromagnetic compatibility (EMC), can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

IEC 61000 is published in separate parts according to the following structure:

Part 1: General
 General considerations (introduction, fundamental principles)
 Definitions, terminology

Part 2: Environment
 Description of the environment
 Classification of the environment
 Compatibility levels

Part 3: Limits
 Emission limits
 Immunity limits (in so far as they do not fall under the responsibility of the product committees)

Part 4: Testing and measurement techniques
 Measurement techniques
 Testing techniques

Part 5: Installation and mitigation guidelines
 Installation guidelines
 Mitigation methods and devices

Part 6: Generic standards

Part 9: Miscellaneous

Each part is further subdivided into several parts, published either as international standards or as technical specifications or technical reports, some of which have already been published as sections. Others will be published with the part number followed by a dash and a second number identifying the subdivision (example: IEC 61000-6-1).

This part is an international standard which gives immunity requirements and test procedures related to radiated, radio-frequency, electromagnetic fields.
1 Scope

This part of IEC 61000 is applicable to the immunity requirements of electrical and electronic equipment to radiated electromagnetic energy. It establishes test levels and the required test procedures.

The object of this document is to establish a common reference for evaluating the immunity of electrical and electronic equipment when subjected to radiated, radio-frequency electromagnetic fields. The test method documented in this part of IEC 61000 describes a consistent method to assess the immunity of an equipment or system against RF electromagnetic fields from RF sources not in close proximity to the EUT. The test environment is specified in Clause 6.

NOTE 1 As described in IEC Guide 107, this is a basic EMC publication for use by product committees of the IEC. As also stated in Guide 107, the IEC product committees are responsible for determining whether this immunity test standard should be applied or not, and if applied, they are responsible for determining the appropriate test levels and performance criteria. TC 77 and its sub-committees are prepared to co-operate with product committees in the evaluation of the value of particular immunity tests for their products.

NOTE 2 Immunity testing against RF sources in close proximity to the EUT is defined in IEC 61000-4-39. Particular considerations are devoted to the protection against radio-frequency emissions from digital radiotelephones and other RF emitting devices.

NOTE 3 Test methods are defined in this part for evaluating the effect that electromagnetic radiation has on the equipment concerned. The simulation and measurement of electromagnetic radiation is not adequately exact for quantitative determination of effects. The test methods defined in this basic document have the primary objective of establishing an adequate reproducibility of testing configuration and repeatability of test results at various test facilities.

This document is an independent test method. It is not possible to use other test methods as substitutes for claiming compliance with this document.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.