Wind energy generation systems –
Part 21-1: Measurement and assessment of electrical characteristics – Wind turbines

Systèmes de génération d'énergie éolienne –
Partie 21-1: Mesurage et évaluation des caractéristiques électriques – Éoliennes
CONTENTS

FOREWORD ... 10
INTRODUCTION .. 12
1 Scope ... 13
2 Normative references ... 13
3 Terms and definitions .. 14
4 Symbols and units ... 25
5 Abbreviated terms .. 26
6 Wind turbine specification ... 27
7 Test conditions and test systems .. 27
 7.1 General ... 27
 7.2 Overview of required test levels .. 27
 7.3 Test validity .. 28
 7.4 Test conditions .. 29
 7.5 Test equipment .. 30
8 Measurement and test of electrical characteristics .. 32
 8.1 General ... 32
 8.2 Power quality aspects .. 32
 8.2.1 General .. 32
 8.2.2 Flicker during continuous operation ... 32
 8.2.3 Flicker and voltage change during switching operations 35
 8.2.4 Harmonics, interharmonics and higher frequency components 38
 8.3 Steady-state operation .. 40
 8.3.1 General .. 40
 8.3.2 Observation of active power against wind speed .. 40
 8.3.3 Maximum power .. 42
 8.3.4 Reactive power characteristic ($Q = 0$) ... 44
 8.3.5 Reactive power capability .. 44
 8.3.6 Voltage dependency of PQ diagram .. 45
 8.3.7 Unbalance factor .. 46
 8.4 Control performance .. 47
 8.4.1 General .. 47
 8.4.2 Active power control ... 47
 8.4.3 Active power ramp rate limitation ... 50
 8.4.4 Frequency control .. 52
 8.4.5 Synthetic inertia .. 54
 8.4.6 Reactive power control ... 55
 8.5 Dynamic performance .. 58
 8.5.1 General .. 58
 8.5.2 Fault ride-through capability .. 58
 8.6 Disconnection from grid ... 66
 8.6.1 General .. 66
 8.6.2 Grid protection 66
 8.6.3 Test of rate of change of frequency RoCoF (df/dt) protection device 70
 8.6.4 Reconnection test ... 71
Annex A (informative) Reporting ... 72
 A.1 Overview ... 72
Figure A.7 – Time series of 3-phase currents as RMS of start-up at the wind speed of ... m/s ... 76
Figure A.8 – Time series of active and reactive power of start-up at the wind speed of ... m/s ... 76
Figure A.9 – Time series of 3-phase voltages as RMS of start-up at the wind speed of ... m/s ... 77
Figure A.10 – Time series of 3-phase currents as RMS of start-up at the wind speed of ... m/s ... 77
Figure A.11 – Time series of active and reactive power of start-up at the wind speed of ... m/s ... 77
Figure A.12 – Time series of 3-phase voltages as RMS of change from generator stage 1 to stage 2 ... 78
Figure A.13 – Time series of 3-phase currents as RMS of change from generator stage 1 to stage 2 ... 78
Figure A.14 – Time series of active and reactive power of change from generator stage 1 to stage 2 ... 78
Figure A.15 – Time series of 3-phase voltages as RMS of change from generator stage 2 to stage 1 ... 78
Figure A.16 – Time series of 3-phase currents as RMS of change from generator stage 2 to stage 1 ... 78
Figure A.17 – Time series of active and reactive power of change from generator stage 2 to stage 1 ... 79
Figure A.18 – Max. of the 95th percentiles of integer harmonic currents vs. harmonic order ... 83
Figure A.19 – Max. of the 95th percentiles of interharmonic currents vs. frequency ... 83
Figure A.20 – Max. of the 95th percentiles of higher frequency current components vs. frequency .. 83
Figure A.21 – Active power as a function of the wind speed .. 84
Figure A.22 – Reactive power vs. active power .. 85
Figure A.23 – PQ-Diagram .. 86
Figure A.24 – PQ-Diagram .. 87
Figure A.25 – PQ-Diagram .. 88
Figure A.26 – Mean 1-min current unbalance factor over active power .. 89
Figure A.27 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the static error .. 89
Figure A.28 – Time-series of measured wind speed during active power control during the test of the static error .. 89
Figure A.29 – Time-series of active power reference values, available power and measured active power output during active power control for the evaluation of the settling time .. 90
Figure A.30 – Time-series of available and measured active power output during ramp rate limitation .. 90
Figure A.31 – Time-series of measured wind speed during ramp rate limitation .. 91
Figure A.32 – Time-series of available and measured active power output during ramp rate limitation .. 91
Figure A.33 – Time-series of measured wind speed during ramp rate limitation .. 91
Figure A.34 – Time-series of available and measured active power output during ramp rate limitation .. 92
Figure A.66 – 3-phase voltages as RMS (1 line period) during the test when the WT under test is connected ... 104

Figure A.67 – Positive and negative sequence fundamental voltage during the test when the WT under test is connected .. 104

Figure A.68 – 3-phase currents as RMS (1 line period) during the test when the WT under test is connected ... 104

Figure A.69 – Pos. and neg. sequence fundamental current during the test when the WT under test is connected .. 105

Figure A.70 – Pos. sequence fundamental active power during the test when the WT under test is connected ... 105

Figure A.71 – Pos. sequence fundamental reactive power during the test when the WT under test is connected .. 105

Figure A.72 – Pos. sequence fundamental active current during the test when the WT under test is connected ... 105

Figure A.73 – Pos. sequence fundamental reactive current during the test when the WT under test is connected .. 105

Figure A.74 – Wind speed or available power during the test when the WT under test is connected .. 105

Figure A.75 – Voltage during the reconnection test of 10 s ... 106

Figure A.76 – Active power during the reconnection test of 10 s, including the recovery 107

Figure A.77 – Time-series of measured wind speed during the reconnection test of 10 s 107

Figure A.78 – Voltage during the reconnection test of 60 s .. 108

Figure A.79 – Active power during the reconnection test of 60 s, including the recovery 108

Figure A.80 – Time-series of measured wind speed during the reconnection test of 60 s 108

Figure A.81 – Voltage during the reconnection test of 600 s ... 109

Figure A.82 – Active power during the reconnection test of 600 s including the recovery 109

Figure A.83 – Time-series of measured wind speed during the reconnection test of 600 s .. 109

Figure B.1 – Measurement procedure for flicker during continuous operation of the wind turbine ... 110

Figure B.2 – Measurement procedure for voltage changes and flicker during switching operations of the wind turbine ... 111

Figure C.1 – Positive directions of active power, reactive power, instantaneous phase voltages and instantaneous phase currents with generator convention 117

Figure C.2 – Examples of the power phasor diagrams of the generator convention in each quadrant with respective instantaneous phase voltage and current 118

Figure D.1 – Definition of the phase angles of the spectral line in generator convention – (5th harmonic with $\alpha5 = 120^\circ$ and $\alpha U5 = 170^\circ$ shown as an example, thus 5th harmonic phase angle is $\phi5 = 170^\circ - 120^\circ = 50^\circ$) .. 126

Figure D.2 – Comparison of harmonic amplitude aggregation (dotted) no aggregated amplitude directly from DFT with 10-cycle window, (dashed) 10-second aggregation 127

Figure D.3 – Comparison of the prevailing angle ratio (PAR) .. 128

Figure F.1 – Block diagram for generic wind turbine (source IEC 61400-27-1) 141

Table 1 – Overview of required test levels .. 28

Table 2 – Specification of requirements for measurement equipment 31

Table 3 – Number of 10-min time-series per wind speed bin .. 41

Table 4 – Number of measurements per power bin (10 min average) 41
Table 5 – Measured maximum active power values ... 43
Table 6 – Accuracy of the active power control values .. 49
Table 7 – Results from the active power reference test ... 49
Table 8 – Active power ramp rate calculation .. 51
Table 9 – Example of Settings for the frequency dependent active power function 53
Table 10 – Test for static error .. 58
Table 11 – Test for dynamic response .. 58
Table 12 – Example of undervoltage events .. 63
Table 13 – Example of overvoltage tests ... 65
Table 14 – Grid protection tests ... 67
Table A.1 – General report information ... 72
Table A.2 – General data .. 73
Table A.3 – Nominal data ... 73
Table A.4 – Test conditions ... 73
Table A.5 – Flicker coefficient per power bin (95th percentile) .. 74
Table A.6 – Start-up at cut in wind speed .. 75
Table A.7 – Start-up at nominal active power .. 76
Table A.8 – Worst-case switching between generators ... 77
Table A.9 – General test information ... 79
Table A.10 – 95th percentile of 10-min harmonic magnitudes per power bin 79
Table A.11 – 95th percentile of 10-min harmonic magnitudes per power bin 81
Table A.12 – 95th percentile of 10-min harmonic magnitudes per power bin 82
Table A.13 – Active power against wind speed (see 8.3.2) ... 83
Table A.14 – Measurement data set .. 84
Table A.15 – Maximum active power ... 84
Table A.16 – Reactive power characteristic .. 85
Table A.17 – PQ-diagram .. 86
Table A.18 – PQ-diagram at maximum voltage ... 87
Table A.19 – PQ-diagram at minimum voltage .. 88
Table A.20 – P-IUFi diagram ... 88
Table A.21 – General test information ... 89
Table A.22 – Static error ... 89
Table A.23 – Dynamic response ... 90
Table A.24 – General test information ... 90
Table A.25 – Active power ramp rate calculation at start-up ... 90
Table A.26 – General test information ... 91
Table A.27 – Active power ramp rate limitation at start-up .. 91
Table A.28 – General test information ... 92
Table A.29 – Active power ramp rate limitation at normal stop ... 92
Table A.30 – General test information ... 92
Table A.31 – Active power ramp rate limitation in normal operation 93
Table A.32 – General test information ... 93
Table A.33 – Test at $0.25 \times P_n < P < 0.5 \times P_n$... 94
Table A.34 – Test at $P > 0.8 \times P_n$... 95
Table A.35 – Synthetic inertia results ... 96
Table A.36 – General test information ... 99
Table A.37 – Static error .. 99
Table A.38 – Dynamic response ... 100
Table A.39 – Results for tests where the WT is not connected 101
Table A.40 – Results for tests where the WT is connected 103
Table A.41 – Voltage protection ... 106
Table A.42 – Frequency protection ... 106
Table A.43 – Complete trip circuit test ... 106
Table A.44 – RoCoF test results ... 107
Table A.45 – RoCoF test information ... 107
Table A.46 – Reconnection test results .. 107
Table B.1 – Nominal values of the wind turbine used in the verification tests 111
Table B.2 – Input relative current fluctuation, $\Delta I/I$, for flicker coefficient $c(\psi_k) = 2.00 \pm 5\%$ when $S_{k, fic} = 20 \cdot S_n$... 112
Table B.3 – Input relative current fluctuation, $\Delta I/I$, for flicker coefficient $c(\psi_k) = 2.00 \pm 5\%$ when $S_{k, fic} = 50 \cdot S_n$... 112
Table B.4 – Test specification for distorted voltage with multiple zero crossings 113
Table D.1 – Example of measurements results presentation 133
Table E.1– Specification of exponents in accordance with IEC TR 61000-3-6 139
Table F.1– Main components influencing the electrical characteristics of the WT 142
WIND ENERGY GENERATION SYSTEMS –
Part 21-1: Measurement and assessment of electrical characteristics – Wind turbines

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)". Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61400-21-1 has been prepared by IEC technical committee 88: Wind energy generation systems.

This first edition cancels and replaces the second edition of 61400-21 published in 2008. This edition constitutes a technical revision.

This edition includes the following new items with respect to 61400-21:

a) frequency control measurement;

b) updated reactive power control and capability measurement, including voltage and cos ϕ control;

c) inertia control response measurement;

d) overvoltage ride through test procedure;

e) updated undervoltage ride through test procedure based on Wind Turbine capability;
f) new methods for the harmonic assessment.

Parts of the assessments related to the wind power plant evaluation are moved to Annex E, as they will be replaced by IEC 61400-21-2, *Measurement and assessment of electrical characteristics – Wind power plants*.

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>88/711/FDIS</td>
<td>88/716/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61400 series, published under the general title *Wind energy generation systems*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

This part of IEC 61400 provides a uniform methodology that will ensure consistency and accuracy in reporting, testing and assessment of electrical characteristics of grid connected wind turbines (WTs). The electrical characteristics include wind turbine specifications and capabilities, voltage quality (emissions of flicker and harmonics), under- and overvoltage ride-through response, active power control, frequency control, voltage control, and reactive power control, grid protection and reconnection time.

This part of IEC 61400 has been prepared with the anticipation that it would be applied by:

– the WT manufacturer, striving to meet well-defined electrical characteristics;
– the WT purchaser, in specifying such electrical characteristics;
– the WT operator, who may be required to verify that stated, or required electrical characteristics are met;
– the WT planner or regulator, who has to be able to accurately and fairly determine the impact of a WT on the voltage quality to ensure that the installation is designed so that voltage quality requirements are respected;
– the WT certification authority or testing organization, in evaluating the electrical characteristics of the wind turbine type;
– the planner or regulator of the electric network, who has to be able to determine the grid connection required for a WT.

This part of IEC 61400 provides recommendations for preparing the measurements and assessment of electrical characteristics of grid connected WTs. This document will benefit those parties involved in the manufacture, installation planning, obtaining of permission, operation, usage, testing and regulation of WTs. The measurement and analysis techniques, recommended in this document, should be applied by all parties to ensure that the continuing development and operation of WTs are carried out in an atmosphere of consistent and accurate communication.

This part of IEC 61400 presents measurement and analysis procedures expected to provide consistent results that can be replicated by others. Any selection of tests can be done and reported separately.
1 Scope

This part of IEC 61400 includes:

- definition and specification of the quantities to be determined for characterizing the electrical characteristics of a grid-connected wind turbine;
- measurement procedures for quantifying the electrical characteristics;
- procedures for assessing compliance with electrical connection requirements, including estimation of the power quality expected from the wind turbine type when deployed at a specific site.

The measurement procedures are valid for single wind turbines with a three-phase grid connection. The measurement procedures are valid for any size of wind turbine, though this part of IEC 61400 only requires wind turbine types intended for connection to an electricity supply network to be tested and characterized as specified in this part of IEC 61400.

The measured characteristics are valid for the specific configuration and operational mode of the assessed wind turbine product platform. If a measured property is based on control parameters and the behavior of the wind turbine can be changed for this property, it is stated in the test report. Example: Grid protection, where the disconnect level is based on a parameter and the test only verifies the proper functioning of the protection, not the specific level.

The measurement procedures are designed to be as non-site-specific as possible, so that electrical characteristics measured at for example a test site can be considered representative for other sites.

This document is for the testing of wind turbines; all procedures, measurements and tests related to wind power plants are covered by IEC 61400-21-2.

The procedures for assessing electrical characteristics are valid for wind turbines with the connection to the PCC in power systems with stable grid frequency.

NOTE

For the purposes of this document, the following terms for system voltage apply:

- Low voltage (LV) refers to $U_n \leq 1 \text{ kV}$;
- Medium voltage (MV) refers to $1 \text{ kV} < U_n \leq 35 \text{ kV}$;
- High voltage (HV) refers to $35 \text{ kV} < U_n \leq 220 \text{ kV}$;
- Extra high voltage (EHV) refers to $U_n > 220 \text{ kV}$.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
SOMMAIRE

- **INTRODUCTION** ... 157
- **AVANT-PROPOS** .. 155
- 1 Domaine d’application .. 158
- 2 Références normatives .. 159
- 3 Termes et définitions .. 159
- 4 Symboles et unités .. 171
- 5 Termes abrégés ... 172
- 6 Spécifications relatives aux éoliennes .. 173
- 7 Conditions d’essai et systèmes d’essai .. 173
 - 7.1 Généralités .. 173
 - 7.2 Vue d’ensemble des niveaux d’essai exigés ... 173
 - 7.3 Validité de l’essai ... 174
 - 7.4 Conditions d’essai .. 175
 - 7.5 Matériel d’essai ... 176
- 8 Mesurage et essai des caractéristiques électriques ... 178
 - 8.1 Généralités ... 178
 - 8.2 Aspects liés à la qualité de puissance ... 178
 - 8.2.1 Généralités .. 178
 - 8.2.2 Papillotement en fonctionnement continu .. 178
 - 8.2.3 Variation de papillotement et de tension pendant les opérations de commutation .. 182
 - 8.2.4 Harmoniques, interharmoniques et composantes à fréquence plus élevée 184
 - 8.3 Fonctionnement en régime établi .. 187
 - 8.3.1 Généralités .. 187
 - 8.3.2 Observation de la puissance active en fonction de la vitesse du vent 187
 - 8.3.3 Puissance maximale .. 190
 - 8.3.4 Caractéristiques puissance reactive \(Q = 0 \) .. 191
 - 8.3.5 Capacité de puissance reactive .. 192
 - 8.3.6 Dépendance de la tension du diagramme QP .. 193
 - 8.3.7 Taux de déséquilibre ... 194
 - 8.4 Contrôle de performance ... 195
 - 8.4.1 Généralités .. 195
 - 8.4.2 Contrôle de puissance active .. 195
 - 8.4.3 Limitation du taux de variation de la puissance active .. 198
 - 8.4.4 Contrôle de fréquence ... 201
 - 8.4.5 Inertie synthétique .. 204
 - 8.4.6 Contrôle de puissance reactive .. 205
 - 8.5 Performances dynamiques ... 208
 - 8.5.1 Généralités .. 208
 - 8.5.2 Capacité d’alimentation continue en cas de défaillance ... 208
 - 8.6 Déconnexion du réseau .. 216
 - 8.6.1 Généralités .. 216
 - 8.6.2 Protection du réseau .. 216
 - 8.6.3 Essai du taux de variation de fréquence RoCoF (df/dt) du dispositif de protection 222
 - 8.6.4 Essai de reconnexion ... 223
Annexe A (informative) Rapport ... 224
A.1 Vue d'ensemble .. 224
A.2 Généralités .. 224
A.3 Aspects liés à la qualité de puissance .. 226
A.4 Fonctionnement en régime établi .. 236
A.5 Performance dynamique (voir 8.5) ... 254
A.6 Déconnexion du réseau (voir 8.6) .. 259
Annexe B (informative) Fluctuations de tension et papillotement 263
B.1 Fonctionnement continu ... 263
B.2 Opérations de commutation .. 263
B.3 Essai de vérification de la procédure de mesure de papillotement 264
B.3.1 Généralités ... 264
B.3.2 Essai des performances de réseau fictif .. 266
B.3.3 Tension déformée $u_m(t)$ avec de multiples passages par zéro 266
B.3.4 Tension déformée $u_m(t)$ avec modulation interharmonique 267
B.3.5 Variations de faible fréquence .. 267
B.4 Déduction des définitions .. 268
B.4.1 Coefficient de papillotement .. 268
B.4.2 Facteur de papillotement sur un échelon .. 268
B.4.3 Facteur de variation de tension ... 269
Annexe C (normative) Mesure de la puissance active, de la puissance réactive et de la tension ... 270
C.1 Généralités .. 270
C.2 Convention des signes du générateur .. 270
C.3 Calcul des grandeurs de séquences positives, négatives et égales à zéro 271
C.3.1 Calcul du phaseur .. 271
C.3.2 Calcul des grandeurs de séquence positive au moyen de composantes de phaseur ... 274
C.3.3 Calcul des grandeurs de séquence négative au moyen de composantes de phaseur ... 275
C.3.4 Calcul des grandeurs de séquence égale à zéro au moyen de composantes de phaseur ... 276
Annexe D (informative) Évaluation harmonique .. 278
D.1 Généralités .. 278
D.2 Méthodes d'analyse générale ... 278
D.2.1 Généralités ... 278
D.2.2 Tensions harmoniques .. 278
D.2.3 Angles de phase harmoniques et amplitudes 278
D.2.4 Analyse statistique .. 282
D.2.5 Ajustement du taux d'échantillonnage ... 282
D.2.6 Détermination de la distorsion de fond de la tension harmonique 283
D.2.7 Variations diurnes de la tension et du courant harmoniques 283
D.2.8 Mise à l'arrêt des éoliennes environnantes ou des charges 284
D.2.9 Harmoniques de courant et de tension sur la puissance 284
D.2.10 Commutation des filtres .. 285
D.2.11 Mesures de source normalisée .. 285
D.2.12 Flux de puissance d'harmoniques + mesures de tension, angle de phase ... 286
D.2.13 Harmoniques de tension avec et sans fonctionnement de l'éolienne soumise à l'essai ... 287
D.2.14 Mesures sur différents sites .. 288
D.2.15 Modèle harmonique .. 288
D.3 Détermination de l'amplitude harmonique influencée par les harmoniques spatiaux dans les systèmes DFAG .. 288

Annexe E (informative) Évaluation de la qualité de puissance des éoliennes et des centrales éoliennes .. 290
E.1 Généralités ... 290
E.2 Fluctuations de tension .. 290
E.2.1 Généralités .. 290
E.2.2 Fonctionnement continu .. 291
E.2.3 Opérations de commutation ... 291
E.3 Harmoniques de courant, interharmoniques et composantes à fréquence plus élevée ... 293

Annexe F (informative) Lignes directrices pour le transfert des résultats d'essais à différentes variantes de turbines dans la même plateforme de produits .. 294

Bibliographie ... 298
Figure A.2 – Coefficient de papillotement $c(30^\circ)$ vs. puissance active 227
Figure A.3 – Coefficient de papillotement $c(50^\circ)$ vs. puissance active 227
Figure A.4 – Coefficient de papillotement $c(70^\circ)$ vs. puissance active 227
Figure A.5 – Coefficient de papillotement $c(85^\circ)$ vs. puissance active 228
Figure A.6 – Séries temporelles de tensions triphasées en tant que valeur efficace de démarrage à la vitesse du vent de ... m/s .. 228
Figure A.7 – Séries temporelles de courants triphasés en tant que valeur efficace de démarrage à la vitesse du vent de ... m/s .. 228
Figure A.8 – Séries temporelles de puissance active et réactive de démarrage à la vitesse du vent de ... m/s .. 229
Figure A.9 – Séries temporelles de tensions triphasées en tant que valeur efficace de démarrage à la vitesse du vent de ... m/s .. 229
Figure A.10 – Séries temporelles de courants triphasés en tant que valeur efficace de démarrage à la vitesse du vent de ... m/s .. 229
Figure A.11 – Séries temporelles de puissance active et réactive de démarrage à la vitesse du vent de ... m/s .. 230
Figure A.12 – Séries temporelles de tensions triphasées en tant que valeur efficace de commutation de l'étape 1 du générateur vers l'étape 2 .. 230
Figure A.13 – Séries temporelles de courants triphasés en tant que valeur efficace de commutation de l'étape 1 du générateur vers l'étape 2 .. 230
Figure A.14 – Séries temporelles de puissance active et réactive de commutation de l'étape 1 du générateur vers l'étape 2 .. 231
Figure A.15 – Séries temporelles de tensions triphasées en tant que valeur efficace de commutation de l'étape 2 du générateur vers l'étape 1 .. 231
Figure A.16 – Séries temporelles de courants triphasés en tant que valeur efficace de commutation de l'étape 2 du générateur vers l'étape 1 .. 231
Figure A.17 – Séries temporelles de puissance active et réactive de commutation de l'étape 2 du générateur vers l'étape 1 .. 231
Figure A.18 – Max. des 95es centiles de courants harmoniques entiers vs. le rang d'harmonique ... 236
Figure A.19 – Max. des 95es centiles de courants interharmoniques vs. la fréquence ... 236
Figure A.20 – Max. des 95es centiles des composantes de courant à fréquence plus élevée vs. la fréquence ... 236
Figure A.21 – Puissance active en fonction de la vitesse du vent ... 237
Figure A.22 – Puissance réactive vs. puissance active ... 238
Figure A.23 – Diagramme QP ... 239
Figure A.24 – Diagramme QP ... 240
Figure A.25 – Diagramme QP ... 241
Figure A.26 – Taux de déséquilibre de courant moyen sur 1 min en puissance active ... 242
Figure A.27 – Séries temporelles des valeurs de référence de la puissance active, de la puissance disponible et de la puissance de sortie active mesurée pendant le contrôle de la puissance active pour l'évaluation de l'erreur statique ... 242
Figure A.28 – Séries temporelles de la vitesse du vent mesurée pendant le contrôle de la puissance active au cours de l'essai de l'erreur statique ... 242
Figure A.29 – Séries temporelles des valeurs de référence de la puissance active, de la puissance disponible et de la puissance de sortie active mesurée pendant le contrôle de la puissance active pour l'évaluation du temps de stabilisation ... 243
Figure A.30 – Séries temporelles de la puissance de sortie active disponible et mesurée pendant la limitation du taux de variation ... 243
Figure A.31 – Séries temporelles de la vitesse du vent mesurée pendant la limitation du taux de variation .. 244
Figure A.32 – Séries temporelles de la puissance de sortie active disponible et mesurée pendant la limitation du taux de variation .. 244
Figure A.33 – Séries temporelles de la vitesse du vent mesurée pendant la limitation du taux de variation .. 244
Figure A.34 – Séries temporelles de la puissance de sortie active disponible et mesurée pendant la limitation du taux de variation .. 245
Figure A.35 – Séries temporelles de la vitesse du vent mesurée pendant la limitation du taux de variation .. 245
Figure A.36 – Séries temporelles de la puissance de sortie active disponible et mesurée pendant la limitation du taux de variation .. 246
Figure A.37 – Séries temporelles de la vitesse du vent mesurée pendant la limitation du taux de variation .. 246
Figure A.38 – Séries temporelles de la puissance disponible, de la puissance active mesurée et de la valeur de référence de la variation de fréquence du réseau .. 247
Figure A.39 – Séries temporelles de la vitesse du vent mesurée .. 247
Figure A.40 – Puissance active mesurée sur la variation de fréquence .. 247
Figure A.41 – Séries temporelles de la puissance disponible, de la puissance active mesurée et de la valeur de référence de la variation de fréquence du réseau .. 248
Figure A.42 – Séries temporelles de la vitesse du vent mesurée .. 248
Figure A.43 – Puissance active mesurée sur la variation de fréquence .. 248
Figure A.44 – Essai 1, séries temporelles de la puissance disponible, de la puissance active mesurée et de la valeur de référence de la variation de fréquence du réseau pour 0,25 × P_n < P < 0,5 × P_n .. 249
Figure A.45 – Essai 1, séries temporelles de la vitesse du vent pour 0,25 × P_n < P < 0,5 × P_n .. 250
Figure A.46 – Essai 2, séries temporelles de la puissance disponible, de la puissance active mesurée et de la valeur de référence de la variation de fréquence du réseau pour 0,25 × P_n < P < 0,5 × P_n .. 250
Figure A.47 – Essai 2, séries temporelles de la vitesse du vent pour 0,25 × P_n < P < 0,5 × P_n .. 250
Figure A.48 – Essai 3, séries temporelles de la puissance disponible, de la puissance active mesurée et des valeurs de référence de la variation de fréquence du réseau pour P > 0,8 × P_n .. 250
Figure A.49 – Essai 3, séries temporelles de la vitesse du vent pour P > 0,8 × P_n .. 250
Figure A.50 – Essai 4, séries temporelles de la puissance disponible, de la puissance active mesurée et de la valeur de référence de la variation de fréquence du réseau pour P > 0,8 × P_n .. 251
Figure A.51 – Essai 4, séries temporelles de la vitesse du vent pour P > 0,8 × P_n .. 251
Figure A.52 – Essai 5, séries temporelles de la puissance disponible, de la puissance active mesurée et de la valeur de référence de la variation de fréquence du réseau pour v > v_n .. 251
Figure A.53 – Essai 5, séries temporelles de la vitesse du vent pour v > v_n .. 251
Figure A.54 – Essai 6, séries temporelles de la puissance disponible, de la puissance active mesurée et de la valeur de référence de la variation de fréquence du réseau pour v > v_n .. 251
Figure A.55 – Essai 6, séries temporelles de la vitesse du vent pour v > v_n .. 252
Figure A.56 – Séries temporelles des valeurs de référence de la puissance réactive et de la puissance réactive mesurée au cours de l’essai de contrôle de puissance réactive .. 252
Figure A.57 – Séries temporelles de la puissance active au cours de l'essai de contrôle de puissance réactive ... 253

Figure A.58 – Séries temporelles des valeurs de référence de la puissance réactive et de la puissance réactive mesurée au cours de l'essai de réponse dynamique de puissance réactive ... 253

Figure A.59 – Séries temporelles de la puissance active au cours de l'essai de réponse dynamique de puissance réactive ... 253

Figure A.60 – Forme d'onde des tensions triphasées pendant l'entrée en creux/hausse de tension lorsque l'éolienne soumise à l'essai n'est pas connectée ... 254

Figure A.61 – Forme d'onde des tensions triphasées pendant l'élimination du creux/de la hausse de tension lorsque l'éolienne soumise à l'essai n'est pas connectée ... 255

Figure A.62 – Tensions triphasées en tant que valeur efficace (1 période de phase) au cours de l'essai lorsque l'éolienne soumise à l'essai n'est pas connectée ... 255

Figure A.63 – Tension de séquence positive au cours de l'essai lorsque l'éolienne soumise à l'essai n'est pas connectée ... 255

Figure A.64 – Forme d'onde des tensions triphasées pendant l'entrée en creux/hausse de tension lorsque l'éolienne soumise à l'essai est connectée ... 257

Figure A.65 – Forme d'onde des tensions triphasées pendant l'élimination du creux/de la hausse de tension lorsque l'éolienne soumise à l'essai est connectée ... 257

Figure A.66 – Tensions triphasées en tant que valeur efficace (1 période de phase) au cours de l'essai lorsque l'éolienne soumise à l'essai est connectée ... 257

Figure A.67 – Tension fondamentale de séquence positive et négative au cours de l'essai lorsque l'éolienne soumise à l'essai est connectée ... 257

Figure A.68 – Courants triphasés en tant que valeur efficace (1 période de phase) au cours de l'essai lorsque l'éolienne soumise à l'essai est connectée ... 257

Figure A.69 – Courant fondamental de séquence positive et négative au cours de l'essai lorsque l'éolienne soumise à l'essai est connectée ... 258

Figure A.70 – Puissance active fondamentale de séquence positive au cours de l'essai lorsque l'éolienne soumise à l'essai est connectée ... 258

Figure A.71 – Puissance réactive fondamentale de séquence positive au cours de l'essai lorsque l'éolienne soumise à l'essai est connectée ... 258

Figure A.72 – Courant actif fondamental de séquence positive au cours de l'essai lorsque l'éolienne soumise à l'essai est connectée ... 258

Figure A.73 – Courant réactif fondamental de séquence positive au cours de l'essai lorsque l'éolienne soumise à l'essai est connectée ... 258

Figure A.74 – Vitesse du vent ou puissance disponible au cours de l'essai lorsque l'éolienne soumise à l'essai est connectée ... 259

Figure A.75 – Tension au cours de l'essai de reconnexion de 10 s ... 260

Figure A.76 – Puissance active au cours de l'essai de reconnexion de 10 s, rétablissement compris ... 260

Figure A.77 – Séries temporelles de la vitesse du vent mesurée au cours de l'essai de reconnexion de 10 s ... 261

Figure A.78 – Tension au cours de l'essai de reconnexion de 60 s ... 261

Figure A.79 – Puissance active au cours de l'essai de reconnexion de 60 s, rétablissement compris ... 261

Figure A.80 – Séries temporelles de la vitesse du vent mesurée au cours de l'essai de reconnexion de 60 s ... 261

Figure A.81 – Tension au cours de l'essai de reconnexion de 600 s ... 261

Figure A.82 – Puissance active au cours de l'essai de reconnexion de 600 s, rétablissement compris ... 262
Figure A.83 – Séries temporelles de la vitesse du vent mesurée au cours de l’essai de raccordement de 600 s ... 262

Figure B.1 – Procédures de mesure du papillotement pendant le fonctionnement continu de l’éolienne ... 263

Figure B.2 – Procédures de mesure des variations de tension et de papillotement pendant les opérations de commutation de l’éolienne ... 264

Figure C.1 – Directions positives de la puissance active, de la puissance réactive, des tensions de phase instantanées et des courants de phase instantanés avec convention du générateur .. 270

Figure C.2 – Exemple de diagrammes de phaseur de puissance de la convention du générateur dans chaque quadrant avec tension de phase instantanée et courant respectifs ... 271

Figure D.1 – Définition des angles de phase de la ligne spectrale dans la convention de générateur – (5e harmonique avec αI5 = + 120° et αU5 = + 170° montré à titre d'exemple, ainsi le 5e angle de phase harmonique est φ5 = + 170° – 120° = + 50°) 279

Figure D.2 – Comparaison de l’agrégation d’amplitude harmonique (pointillés) pas d’amplitude agrégée directement à partir de la transformée de Fourier discrète avec une fenêtre de 10 cycles, (tirets) agrégation de 10 secondes .. 280

Figure D.3 – Comparaison du rapport d’angle dominant (PAR) ... 282

Figure F.1 – Diagramme général d’une éolienne générique (source: IEC 61400-27-1) 295

Tableau 1 – Vue d'ensemble des niveaux d'essai exigés .. 174
Tableau 2 – Spécification des exigences pour les appareils de mesure 177
Tableau 3 – Nombre de séries temporelles de 10 min par tranche de vitesse du vent 187
Tableau 4 – Nombre de mesures par tranche de puissance (10 min en moyenne) 188
Tableau 5 – Valeurs de puissance active maximale mesurée .. 191
Tableau 6 – Précision des valeurs de contrôle de la puissance active 198
Tableau 7 – Résultats de l’essai de référence de puissance active 198
Tableau 8 – Calcul du taux de variation de la puissance active ... 200
Tableau 9 – Exemple de réglages pour la fonction de puissance active dépendante de la fréquence ... 203
Tableau 10 – Essai pour l’erreur statique .. 208
Tableau 11 – Essai pour la réponse dynamique ... 208
Tableau 12 – Exemple d’événements de sous-tension ... 213
Tableau 13 – Exemple d’essais de surtension .. 215
Tableau 14 – Essais de protection du réseau ... 218
Tableau A.1 – Rapport général d'informations ... 224
Tableau A.2 – Données générales .. 225
Tableau A.3 – Données nominales .. 225
Tableau A.4 – Conditions d'essai .. 226
Tableau A.5 – Coefficient de papillotement par tranche de puissance (95e centile) 226
Tableau A.6 – Mise en marche à la vitesse de démarrage .. 228
Tableau A.7 – Démarrage en puissance nominale active .. 229
Tableau A.8 – Cas le plus défavorable de commutation entre générateurs 230
Tableau A.9 – Informations générales relatives aux essais .. 232
Tableau A.10 – 95e centile d’amplitudes harmoniques de 10 min par tranche de puissance ... 232
Tableau A.11 – 95e centile d'amplitudes harmoniques de 10 min par tranche de puissance ... 234
Tableau A.12 – 95e centile d'amplitudes harmoniques de 10 min par tranche de puissance ... 235
Tableau A.13 – Puissance active en fonction de la vitesse du vent (voir 8.3.2) ... 236
Tableau A.14 – Ensemble de données de mesure ... 237
Tableau A.15 – Puissance active maximale ... 237
Tableau A.16 – Caractéristique de la puissance réactive ... 238
Tableau A.17 – Diagramme QP .. 239
Tableau A.18 – Diagramme QP à la tension maximale ... 240
Tableau A.19 – Diagramme QP à la tension minimale ... 241
Tableau A.20 – Diagramme P-IUFi .. 242
Tableau A.21 – Informations générales relatives aux essais ... 242
Tableau A.22 – Erreur statique .. 243
Tableau A.23 – Réponse dynamique .. 243
Tableau A.24 – Informations générales relatives aux essais ... 244
Tableau A.25 – Calcul du taux de variation de la puissance active au démarrage ... 244
Tableau A.26 – Informations générales relatives aux essais ... 245
Tableau A.27 – Limitation du taux de variation de la puissance active au démarrage ... 245
Tableau A.28 – Informations générales relatives aux essais ... 245
Tableau A.29 – Limitation du taux de variation de la puissance active pendant l’arrêt normal .. 246
Tableau A.30 – Informations générales relatives aux essais ... 246
Tableau A.31 – Limitation du taux de variation de la puissance active en fonctionnement normal.. 246
Tableau A.32 – Informations générales relatives aux essais ... 247
Tableau A.33 – Essai à 0,25 x Pn < P < 0,5 x Pn .. 247
Tableau A.34 – Essai à P > 0,8 x Pn .. 248
Tableau A.35 – Résultats inertie synthétique .. 249
Tableau A.36 – Informations générales relatives aux essais ... 252
Tableau A.37 – Erreur statique .. 252
Tableau A.38 – Réponse dynamique .. 253
Tableau A.39 – Résultats pour les essais effectués lorsque l’éolienne n’est pas connectée .. 254
Tableau A.40 – Résultats pour les essais effectués lorsque l’éolienne est connectée .. 256
Tableau A.41 – Protection de tension .. 259
Tableau A.42 – Protection de fréquence .. 259
Tableau A.43 – Essai du circuit de déclenchement complet .. 259
Tableau A.44 – Résultats de l’essai RoCoF .. 260
Tableau A.45 – Informations générales relatives à l’essai RoCoF .. 260
Tableau A.46 – Résultats de l’essai de reconnexion .. 260
Tableau B.1 – Valeurs nominales de la vitesse du vent utilisées pour les essais de vérification .. 265
Tableau B.2 – Fluctuation du courant d’entrée relatif, ΔI/I, pour le coefficient de papillotement c(ψk) = 2,00 ± 5 % lorsque $S_{k,fic} = 20 \cdot S_n$.. 265
Tableau B.3 – Fluctuation du courant d’entrée relatif, ΔI/I, pour le coefficient de papillotement $c(\psi_k) = 2,00 \pm 5\%$ lorsque $S_{k,fic} = 50 \cdot S_n$.. 266

Tableau B.4 – Caractéristiques d’essai pour la tension déformée avec de multiples passages par zéro .. 267

Tableau D.1 – Exemple de présentation des résultats de mesures .. 287

Tableau E.1 – Spécifications des exposants conformément à l’IEC TR 61000-3-6 293

Tableau F.1 – Principales composantes influençant les caractéristiques électriques de l’éolienne ... 296
SYSTÈMES DE GÉNÉRATION D’ÉNERGIE ÉOLIENNE –
Partie 21-1: Mesurage et évaluation des caractéristiques électriques – Éoliennes

AVANT-PROPOS

2) Les décisions ou accords officiels de l’IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l’IEC intéressés sont représentés dans chaque comité d’études.

3) Les Publications de l’IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l’IEC. Tous les efforts raisonnables sont entrepris afin que l’IEC s’assure de l’exactitude du contenu technique de ses publications; l’IEC ne peut pas être tenue responsable de l’éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

5) L’IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournisent des services d’évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l’IEC. L’IEC n’est responsable d’aucun des services effectués par les organismes de certification indépendants.

6) Tous les utilisateurs doivent s’assurer qu’ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à l’IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d’études et des Comités nationaux de l’IEC, pour tout préjudice causé en cas de dommages corporels ou matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l’utilisation de cette Publication de l’IEC ou de toute autre Publication de l’IEC, ou au crédit qui lui est accordé.

8) L’attention est attirée sur les références normatives citées dans cette publication. L’utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.

9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de l’IEC peuvent faire l’objet de droits de brevet. L’IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 61400-21-1 a été établie par le comité d’études 88 de l’IEC:
Systèmes de génération d’énergie éolienne.

Cette édition inclut les nouveaux éléments suivants par rapport à l’IEC 61400-21:

a) mesure de contrôle de fréquence;

b) contrôle actualisé de la puissance réactive et de la mesure de la capacité, y compris le contrôle de la tension et contrôle du cos φ;
c) mesure de la réponse du contrôle d'inertie;
d) procédure d'essai du passage de surtension;
e) procédure d'essai du maintien de l'alimentation en sous-tension en fonction de la capacité des éoliennes actualisée;
f) nouvelles méthodes pour l'évaluation de l'harmonique.

Les parties des évaluations liées à l'évaluation de la centrale éolienne sont déplacées à l'Annexe E, car elles seront remplacées par l'IEC 61400-21-2, Mesurage et évaluation des caractéristiques électriques – Centrales éoliennes.

Le texte de cette Norme internationale est issu des documents suivants:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Rapport de vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>88/711/FDIS</td>
<td>88/716/RVD</td>
</tr>
</tbody>
</table>

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette Norme internationale.

Ce document a été rédigé selon les Directives ISO/IEC, Partie 2.

Une liste de toutes les parties de la série IEC 61400, publiées sous le titre général Systèmes de génération d'énergie éolienne, peut être consultée sur le site web de l'IEC.

Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives au document recherché. À cette date, le document sera

- reconduit,
- supprimé,
- remplacé par une édition révisée, ou
- amendé.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.
INTRODUCTION

La présente partie de l'IEC 61400 fourni une méthodologie uniforme qui assurera la cohérence et la précision dans le compte-rendu, les essais et l'évaluation des caractéristiques électriques des éoliennes connectées au réseau. Les caractéristiques électriques comprennent les spécifications et les capacités relatives aux éoliennes, la qualité de la tension (émissions de papillotement et d'harmoniques), la réponse à la sous-tension et à la surtension, le contrôle de la puissance active, le contrôle de la fréquence, le contrôle de la tension et le contrôle de la puissance réactive, la protection du réseau et le temps de reconnexion.

La présente partie de l'IEC 61400 a été préparée avec la perspective de son application par:

- le fabricant d'éoliennes, s'efforçant de satisfaire à des caractéristiques électriques bien définies;
- l'acheteur d'éoliennes, en spécifiant de telles caractéristiques électriques;
- l'opérateur d'éoliennes, à qui il peut être exigé de vérifier ce qui est stipulé ou si les caractéristiques électriques exigées sont respectées;
- le planificateur ou le régulateur de l'éolienne, qui doit pouvoir déterminer, précisément et honnêtement, l'impact d'une éolienne sur la qualité de la tension, pour s'assurer que l'installation est conçue de telle sorte que les exigences de qualité de tension soient respectées;
- l'autorité de certification de l'éolienne ou l'organisme d'essai, en évaluant les caractéristiques électriques du type d'éolienne;
- le planificateur ou le régulateur du réseau électrique, qui doit pouvoir déterminer le raccordement au réseau exigé pour une éolienne.

La présente partie de l'IEC 61400 fournit des recommandations pour préparer les mesures et l'évaluation des caractéristiques électriques des éoliennes connectées au réseau. Le présent document sera utile pour les acteurs concernés par la fabrication, la planification des installations, l'obtention des autorisations, l'exploitation, l'utilisation, les essais et la réglementation des éoliennes. Il convient que les techniques de mesure et d'analyse, recommandées dans le présent document, soient appliquées par tous les acteurs, pour s'assurer que le développement et l'exploitation continus des éoliennes s'effectuent dans un climat de communication cohérent et précis.

La présente partie de l'IEC 61400 présente des procédures de mesure et d'analyse prévues pour fournir des résultats cohérents qui pourront être reproduits par d'autres. Tout choix d'essais peut être fait et consigné séparément.
SYSTÈMES DE GÉNÉRATION D’ÉNERGIE ÉOLIENNE –
Partie 21-1: Mesurage et évaluation des caractéristiques électriques – Éoliennes

1 Domaine d'application

La présente partie de l'IEC 61400 comprend:

- la définition et la spécification des grandeurs à déterminer pour caractériser les caractéristiques électriques d'une éolienne connectée à un réseau;
- les procédures de mesure pour quantifier les caractéristiques électriques;
- les procédures pour évaluer la conformité aux exigences de raccordement électrique, y compris l’estimation de la qualité de puissance attendue d’un type d'éolienne, une fois déployée sur un site spécifique.

Les procédures de mesure sont valables pour les éoliennes individuelles avec un raccordement triphasé au réseau. Les procédures de mesure sont valables pour n’importe quelle taille d’éolienne; toutefois, la présente partie de l’IEC 61400 exige uniquement des types d'éoliennes prévues pour le raccordement à un réseau d’alimentation électrique, qui sont donc à soumettre aux essais et à caractériser comme spécifié dans la présente partie de l'IEC 61400.

Les caractéristiques mesurées sont valables pour la configuration spécifique et le mode de fonctionnement de la plateforme de produits éoliens évaluée. Il est spécifié dans le rapport d’essai si une propriété mesurée repose sur des paramètres de commande et que le comportement de l’éolienne peut être modifié pour cette propriété. Exemple: Protection du réseau, où le niveau de déconnexion repose sur un paramètre et l’essai ne vérifie que le bon fonctionnement de la protection, et non le niveau spécifique.

Les procédures de mesure sont conçues pour être aussi indépendantes du site que possible, de sorte que des caractéristiques électriques, mesurées par exemple sur un site d’essai, puissent être vues comme représentatives pour d’autres sites.

Le présent document concerne les essais des éoliennes; toutes les procédures, mesures et essais relatifs aux centrales éoliennes sont couverts par l’IEC 61400-21-2.

Les procédures d’évaluation des caractéristiques électriques sont valables pour les éoliennes connectées au PCC dans les réseaux d’alimentation à fréquence de réseau stable.

NOTE

Pour les besoins du présent document, les termes suivants s’appliquent pour la tension du système:
- basse tension (BT) s’applique à $U_n \leq 1$ kV;
- moyenne tension (MT) s’applique à 1 kV < $U_n \leq 35$ kV;
- haute tension (HT) s’applique à 35 kV < $U_n \leq 220$ kV;
- très haute tension (THT) s’applique à $U_n > 220$ kV.
2 Références normatives

Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu, des exigences du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 61000-3-2:2014, Compatibilité électromagnétique (CEM) – Partie 3-2: Limites – Limites pour les émissions de courant harmonique (courant appelé par les appareils ≤ 16 A par phase)

IEC 61000-3-3, Compatibilité électromagnétique (CEM) – Partie 3-3: Limitation – Limitations des variations de tension, des fluctuations de tension et du papillotement dans les réseaux publics d'alimentation basse tension pour les matériels ayant un courant assigné < 16 A par phase et non soumis à un raccordement conditionnel

IEC TR 61000-3-6, Electromagnetic compatibility (EMC) – Part 3-6: Limits – Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems (disponible en anglais seulement)

IEC TR 61000-3-7, Electromagnetic compatibility (EMC) – Part 3-7: Limits – Assessment of emission limits for the connection of fluctuating installations to MV, HV and EHV power systems (disponible en anglais seulement)

IEC TR 61000-3-14, Electromagnetic compatibility (EMC) – Part 3-14: Assessment of emission limits for harmonics, interharmonics, voltage fluctuations and unbalance for the connection of disturbing installations to LV power systems (disponible en anglais seulement)

IEC 61000-4-7:2002, Compatibilité électromagnétique (CEM) – Partie 4-7: Techniques d'essai et de mesure – Guide général relatif aux mesures d'harmoniques et d'interharmoniques, ainsi qu'à l'appareillage de mesure, applicable aux réseaux d'alimentation et aux appareils qui y sont raccordés

IEC 61000-4-7:2002/AMD1:2008

IEC 61000-4-15:2010, Compatibilité électromagnétique (CEM) – Partie 4-15: Techniques d'essai et de mesure – Flickermètre – Spécifications fonctionnelles et de conception

IEC 61000-4-30, Compatibilité électromagnétique (CEM) – Partie 4-30: Techniques d'essai et de mesure – Méthodes de mesure de la qualité de l'alimentation

IEC TR 61869-103:2012, Instrument transformers – The use of instrument transformers for power quality measurement (disponible en anglais seulement)

IEC 62008, Caractéristiques de performance et méthodes d'étalonnage pour les systèmes d'acquisition de données numériques et logiciels appropriés