American National Standard for
Hand Protection Selection Criteria

Secretariat
International Safety Equipment Association

Approved February 25, 2011
American National Standards Institute, Inc.
An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest editions.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no persons shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

International Safety Equipment Association
1901 North Moore Street, Suite 808,
Arlington, Virginia 22209

Copyright 2011 by ISEA
All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America
Foreword (This Foreword is not part of American National Standard ANSI/ISEA 105-2011)

The Occupational Safety and Health Administration (OSHA) mandates in its regulation 29 CFR 1910.138 that employers select and require employees to use appropriate hand protection where there is workplace exposure to hazards such as chemical burns or severe cuts and lacerations. OSHA also mandates that such selection be based on an evaluation of performance characteristics of hand protection relative to the tasks being performed.

The Hand Protection Group of ISEA, whose members include Ansell Protective Products, DSM Dyneema, DuPont Personal Protection, Ergodyne, HexArmor, Honeywell Safety Products, Kimberly-Clark Professional, Lakeland Industries, Magid Glove and Safety, MCR Safety, OccuNomix International, and OK-1 Manufacturing has updated this standard to assist employers and users in the appropriate selection of gloves for specific workplace exposures. This document provides or refers to appropriate test methods for specified criteria and provides pass/fail criteria to allow users to interpret test results and determine if certain hand protection products meet their needs.

Significant changes in this third edition of ANSI/ISEA 105 include the acceptance of varying methods to be used in evaluating performance characteristics for cut-resistant and abrasion resistant items. Classification for cut-resistance can be determined using one of two methods and is calculated using the ISEA standardized template. Details on the data collection procedures have been included in the appendix to assist in eliminating variability to the extent possible. ANSI/ISEA 105-2011 now includes separate testing methods for abrasion resistance classification to be use depending upon material type. Cited test methods have been updated to reflect the state of the art in materials performance and technology and to harmonize with other existing standards, where possible.

This standard was approved using consensus procedures prescribed by the American National Institute. The following organizations were contacted prior to the approval of this standard. Inclusion in this list does not necessarily imply that the organization concurred with the submittal of the proposed standard to ANSI.

- Atlas Industrial Contractors
- Capital Power Corporation
- CDT EHS Consulting LLC
- Dartmouth University
- DGI Supply
- ENMR-Plateau
- Honeywell International
- International Personnel Protection, Inc.
- International Safety Equipment Association
- MAPA Professional
- National Institute for Occupational Safety and Health
- North Carolina State University School of Textiles
- Pioneer Telephone Cooperative, Inc.
- Protection Services, Inc.
- Safety Equipment Institute
- Underwriters Laboratories
- U.S. Steel
- Waste Equipment Technology Association
- World Fibers, Inc.
Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scope</td>
<td>5</td>
</tr>
<tr>
<td>2. Purpose</td>
<td>5</td>
</tr>
<tr>
<td>3. Definitions</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Definitions of Glove Responses to Stress</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Definitions Related to Chemical Effects</td>
<td>5</td>
</tr>
<tr>
<td>3.3 Definitions Related to Sampling Procedures</td>
<td>6</td>
</tr>
<tr>
<td>3.4 Other Sources of Terminological Information</td>
<td>6</td>
</tr>
<tr>
<td>4. Hand Protection Selection</td>
<td>6</td>
</tr>
<tr>
<td>5. Hand Protection Classification</td>
<td>6</td>
</tr>
<tr>
<td>5.1 Mechanical Protection</td>
<td>6</td>
</tr>
<tr>
<td>5.1.1 Cut Resistance</td>
<td>6</td>
</tr>
<tr>
<td>5.1.2 Puncture Resistance</td>
<td>7</td>
</tr>
<tr>
<td>5.1.3 Abrasion Resistance</td>
<td>7</td>
</tr>
<tr>
<td>5.2 Chemical Protection</td>
<td>7</td>
</tr>
<tr>
<td>5.2.1 Chemical Permeation Resistance</td>
<td>7</td>
</tr>
<tr>
<td>5.2.2 Chemical Degradation Resistance</td>
<td>8</td>
</tr>
<tr>
<td>5.3 Detection of Holes</td>
<td>8</td>
</tr>
<tr>
<td>5.4 Heat and Flame Protection</td>
<td>8</td>
</tr>
<tr>
<td>5.4.1 Ignition Resistance and Burning Behavior (or After-Flame Time)</td>
<td>8</td>
</tr>
<tr>
<td>5.4.2 Heat Degradation Resistance</td>
<td>9</td>
</tr>
<tr>
<td>5.4.3 Conductive Heat Resistance</td>
<td>9</td>
</tr>
<tr>
<td>5.5 Vibration Reduction</td>
<td>9</td>
</tr>
<tr>
<td>5.6 Dexterity</td>
<td>9</td>
</tr>
<tr>
<td>6. Report of Test Data</td>
<td>10</td>
</tr>
<tr>
<td>7. Marking and Labeling</td>
<td>10</td>
</tr>
</tbody>
</table>

Appendices

- **Appendix A**: Data Collection Procedures for ASTM F1790
- **Appendix B**: Test Method for Chemical Degradation Resistance
- **Appendix C**: Descriptions of Test Methods Used in This Standard
- **Appendix D**: Recommended Hand Protection Selection Procedure
- **Appendix E**: Other Factors for Consideration
- **Appendix F**: Resources
American National Standard for Hand Protection Selection Criteria

1. Scope

This standard addresses the classification and testing of hand protection for specific performance properties related to chemical and industrial applications. Hand protection includes gloves, mittens, partial gloves, or other items covering the hand or a portion of the hand that are intended to provide protection against or resistance to a specific hazard.

This standard provides performance ranges for many different properties based on standardized test methods. Descriptions of the test methods used in this standard are provided in Appendix C. Different levels of performance are specified for each property with zero (0) representing the minimal protection or none at all.

The standard does not address protection from electric shock, ionizing or non-ionizing radiation, every type of thermal exposure and harmful temperature extreme, and every type of exposure to chemicals, biological agents, or other hazardous substances. This standard does not address protection for welding, emergency response applications or fire fighter applications. Other factors to be considered when selecting hand protection are identified in Appendix D and Appendix E.

2. Purpose

The purpose of this standard is to provide manufacturers with a mechanism to classify their products for specified areas of glove performance. The information from this testing and classification can be used to help users to select appropriate hand protection.

DISCLAIMER: Manufacturers of hand protection items determine which tests apply to their products in order to represent a product’s performance to individual test classifications of this standard.

Representations by manufacturers regarding a product’s compliance with a particular test criterion do not mean, nor should it be implied, that the product meets any other test selection criteria unless specifically stated.

3. Definitions

These definitions provide the meanings of the terms in the context of this standard. Many of the terms have broader meanings in other technical and non-technical contexts.

3.1 Definitions of Glove Responses to Stress

resistance (to a stressor): A property of a glove that permits it to withstand change when stressed.

protection (from a stressor): A property that prevents or reduces deleterious effects on the wearer of a glove when stressed.

NOTE: The distinction between resistance and protection cannot always be clearly drawn. For example, if the stressor is a sharp edge, cut resistance is a property that reduces damage both to the glove and to the wearer.

3.2 Definitions Related to Chemical Effects

Chemical resistance and protection from chemicals are strongly interrelated. Of the three effects of chemicals defined below, one relates to the effects on the gloves and the other two represent routes by which chemicals can reach the wearer.

degradation: A deleterious change in one or more properties of a glove due to contact with a chemical. Rubber gloves may swell, soften and weaken; plastic gloves may shrink, stiffen, harden, and crack when flexed.

penetration: The flow of a chemical through a glove on a non-molecular level through porous materials, seams, and pinholes or other imperfections in the barrier film. The gaps in the barrier are visible, although a magnifying glass or microscope may be needed to see them. Pathways for penetration may occur as the result of degradation when a chemical or physical stressor comes in contact with the glove material.