Determination of particle size distribution — Single particle light interaction methods —

Part 3:
Light extinction liquid-borne particle counter

Détermination de la distribution granulométrique — Méthodes d'interaction lumineuse de particules uniques —
Partie 3: Compteur de particules en suspension dans un liquide par extinction de la lumière
Contents

Foreword ... iv
Introduction .. v
1 Scope .. vi
2 Normative references ... 1
3 Terms and definitions ... 1
4 Principle ... 3
5 Basic configuration ... 3
6 Requirements ... 3
 6.1 Size setting error ... 3
 6.2 Counting efficiency .. 4
 6.3 Size resolution .. 4
 6.4 Maximum particle number concentration 4
 6.5 Sampling flow rate error 4
 6.6 Sampling time error ... 4
 6.7 Sampling volume error 4
 6.8 Calibration interval .. 4
 6.9 Reporting of test and calibration results 4
7 Test and calibration procedures 5
 7.1 Size setting .. 5
 7.1.1 Evaluation of size setting error 5
 7.1.2 Procedure of size setting 5
 7.2 Evaluation of counting efficiency 8
 7.3 Evaluation of size resolution 9
 7.4 Estimation of coincidence loss at the maximum particle number concentration 10
 7.5 Evaluation of sampling flow rate error 11
 7.6 Evaluation of sampling time error 11
 7.7 Evaluation of sampling volume error 11

Annex A (informative) Size resolution 12

Annex B (informative) Procedure for evaluating the uncertainties of the results of the performance tests 13

Bibliography .. 18
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 24, Particle characterization including sieving, Subcommittee SC 4, Particle characterization.

This second edition cancels and replaces the first edition (ISO 21501-3:2007), which has been technically revised. The main changes from the previous edition are as follows:

— Clause 4 for “Principle” and Clause 5 for “Basic configuration” have been added;
— “size calibration” and “verification of size setting” have been combined as “size setting error” in the requirements (Clause 6);
— “Test report” (3.10 in the previous edition) has been changed to 6.9 on “Reporting of test and calibration results”;
— information about uncertainties has been enriched and is now the subject of Annex B.

A list of all parts in the ISO 21501 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
Introduction

Monitoring particle contamination levels is required in various fields, e.g. in the electronic industry, in the pharmaceutical industry, in the manufacturing of precision machines and in medical operations. Particle counters are useful instruments for monitoring particle contamination in liquid. The purpose of this document is to provide a calibration procedure and verification method for particle counters, so as to minimize the inaccuracy in the measurement result by a counter, as well as the differences in the results measured by different instruments.